◆□ → < @ → < 差 → < 差 → 差 の Q @ 1/15</p>

Generalising Fault Attacks to Genus Two Isogeny Cryptosystems

Ariana Goh, Chu-Wee Lim, Yan Bo Ti

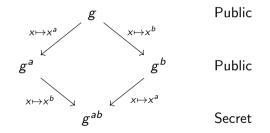
DSO National Laboratories, Singapore

16 September 2022

SIDH fault attack 000

G2SIDH fault attack

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

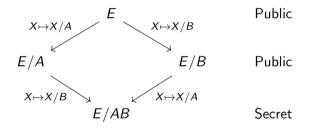


- Elliptic Curves and Isogenies
- SIDH fault attack
- G2SIDH fault attack

SIDH fault attack

G2SIDH fault attack 00000

Diffie Hellman



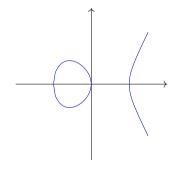
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SIDH fault attack 000

G2SIDH fault attack 00000

SIDH overview

SIDH fault attack

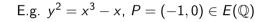

G2SIDH fault attack 00000

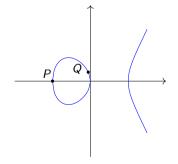
Elliptic Curves

An *elliptic curve E* is a curve given by

$$E: y^2 = x^3 + ax + b.$$

E.g. $y^2 = x^3 - x$,


SIDH fault attack

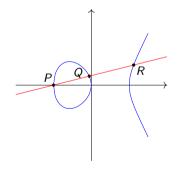

G2SIDH fault attack 00000

Elliptic Curves

An *elliptic curve E* is a curve given by

$$E: y^2 = x^3 + ax + b.$$

SIDH fault attack

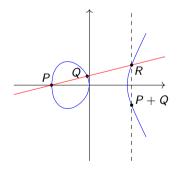

G2SIDH fault attack 00000

Elliptic Curves

An *elliptic curve E* is a curve given by

$$E: y^2 = x^3 + ax + b.$$

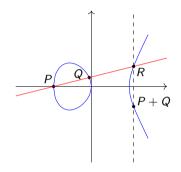
E.g. $y^2 = x^3 - x$, $P = (-1, 0) \in E(\mathbb{Q})$



Elliptic Curves

An *elliptic curve E* is a curve given by

$$E: y^2 = x^3 + ax + b.$$


E.g. $y^2 = x^3 - x$, $P = (-1, 0) \in E(\mathbb{Q})$

SIDH fault attack 000

G2SIDH fault attack 00000

Elliptic Curves

Elliptic curves forms an abelian group under modulo p (\mathbb{F}_p):

• Group: (P + Q) + R = P + (Q + R), O + P = P + O = P

• Abelian:
$$P + Q = Q + P$$

G2SIDH fault attack 00000

Isogenies

Isogenies are maps $\phi: E \rightarrow E'$ between elliptic curves such that

$$\phi(P +_E Q) = \phi(P) +_{E'} \phi(Q)$$

Example: $[N] : E \to E, P \mapsto [N]P = P \underbrace{+ \cdots + P}_{N \text{ times}} P$ For subgroups $A \subset E$, there exists a isogeny $\phi : E \to E/A$ such that $\phi(P) = \mathcal{O}_{E/A} \iff P \in A$, equivalently, if ker $\phi = A$.

$$E[N] = \ker[N]$$

SIDH Protocol

Choose Elliptic curve E/\mathbb{F}_{p^2} such that

• $E\left[\ell_A^{e_A}\right] = C_{\ell^{e_A}}^2$, generated by P_A, Q_A • $E\left[\ell_B^{e_B}\right] = C^2_{\ell_B^{e_B}}$, generated by P_B, Q_B Alice Bob $A = P_A + [r_A]Q_A$ $B = P_B + [r_B]Q_B$ $\phi_A: E \to E/\langle A \rangle$ $\phi_B: E \to E/\langle B \rangle$ $E/\langle A \rangle, \phi_A(P_B), \phi_A(Q_B)$ • $E/\langle B\rangle,\phi_B(P_A),\phi_B(Q_A)$ $\phi_B(A) = \phi_B(P_A) + [r_A]\phi_B(Q_A) \qquad \phi_A(B) = \phi_A(P_B) + [r_B]\phi_A(Q_B)$ $E/\langle B \rangle \rightarrow E/\langle A, B \rangle$ $E/\langle A \rangle \rightarrow E/\langle A, B \rangle$ <ロ> < □ > < □ > < Ξ > < Ξ > Ξ - の Q @ 8/15

G2SIDH fault attack 00000

◆□ → ◆□ → ◆ 三 → ◆ 三 → りへぐ 9/15

SIDH Fault Attack

Idea: Given $\phi_A(R)$ for $R \in E[\ell_A^{e_A}]$, if $\langle A, R \rangle = E[\ell_A^{e_A}]$, then

$$\hat{\phi}_{A} = (E/\langle A \rangle \rightarrow E/\langle A, R \rangle) \cong E$$

Fault attack: Fault the computation of $\phi_A(P_B)$ such that Alice sends $\phi_A(R)$. We can get the image of a point in $E\left[\ell_A^{e_A}\right]$ with

$$\frac{\#E/\mathbb{F}_{p^2}}{\ell_A^{e_A}}\phi_A(R) = \phi_A\left(\underbrace{\frac{\#E/\mathbb{F}_{p^2}}{\ell_A^{e_A}}R}_{R'}\right)$$

SIDH fault attack

G2SIDH fault attack 00000

SIDH Fault Attack Probabilities

$$\frac{\#E/\mathbb{F}_{p^{2}}}{\ell_{A}^{e_{A}}}\phi_{A}(R) = \phi_{A}\left(\underbrace{\frac{\#E/\mathbb{F}_{p^{2}}}{\ell_{A}^{e_{A}}}R}_{R'}\right)$$
$$\frac{|E\left[\ell_{A}^{e_{A}}\right]|}{|\langle A, R'\rangle|} = \ell_{A}^{k} \text{ occurs with probability } \frac{\ell_{A}-1}{\ell_{A}^{k+1}}$$
$$|E\left[\ell_{A}^{e_{A}}\right]| = |\langle A, R'\rangle| \text{ with probability } 1 - \frac{1}{\ell_{A}}$$

<□ → < @ → < Ξ → < Ξ → Ξ の Q ℃ 10/15</p>

G2SIDH fault attack •0000

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ → ○ ○ ○ 11/15

G2SIDH Overview

In genus 2, we can still add points, have isogenies and form quotients $\phi : \mathcal{A} \to \mathcal{A}/G$. However instead of $E\left[\ell_A^{e_A}\right] = C_{\ell_A^{e_A}}^2$, we have $\mathcal{A}\left[\ell_A^{e_A}\right] = C_{\ell_A^{e_A}}^4$ Kernel of isogeny used in G2SIDH is generated by 2 or 3 elements.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■ - のへで 12/15

G2SIDH Protocol

- 1. Choose $\mathcal{A}\left[\ell_{A}^{e_{A}}\right] = C_{\ell_{A}^{e_{A}}}^{4} = \langle P_{1}, P_{2}, P_{3}, P_{4} \rangle$, $\mathcal{A}\left[\ell_{B}^{e_{B}}\right] = C_{\ell_{B}^{e_{B}}}^{4} = \langle Q_{1}, Q_{2}, Q_{3}, Q_{4} \rangle$
- 2. Alice and Bob chooses secret subgroups $A \in \mathcal{A}\left[\ell_A^{e_A}\right]$, $B \in \mathcal{A}\left[\ell_B^{e_B}\right]$ respectively
- 3. Alice and Bob computes $\phi_A : A \to A/A$, $\phi_B : A \to A/B$ respectively
- 4. $\mathcal{A}/A, \mathcal{A}/B, \phi_A(Q_i), \phi_B(P_i)$ are exchanged publically
- 5. Alice and Bob computes $\mathcal{A}/(AB)$

G2SIDH fault attack 00000

G2SIDH Fault Attack Overview

- Idea: Having image of $\mathcal{A}\left[\ell_A^{e_A}\right]$ under ϕ_A is enough to recover ϕ_A
- Fault attack: Force Alice to output the image of random points under ϕ_A
- Need to fault more points to get $\phi_A \left(\mathcal{A} \left[\ell_A^{e_A} \right] \right)$
- Probability of full recovery and how much brute force needed is more intricate

G2SIDH fault attack

G2SIDH Fault Attack Results

Probability that *n* faults gives a subgroup of index ℓ_A^k where $\phi_A(\mathcal{A}[\ell_A^{e_A}])$ has *m* generators is

$$\ell_A^{-nk}\left(\prod_{i=0}^{m-1}1-\ell_A^{i-m}
ight)\left(\prod_{i=1}^krac{1-\ell_A^{m+k-i}}{1-\ell_A^i}
ight)$$

Average amount of isogenies to brute force through when m = n = 2:

$$\frac{\ell_A^7 + 16\ell_A^6 + 75\ell_A^5 + 176\ell_A^4 + 219\ell_A^3 + 176\ell_A^2 + 65\ell_A + 16\ell_A^2 + 66\ell_A + 16\ell_A^2 + 66\ell_A^2 + 66\ell_A + 16\ell_A^2 + 66\ell_A^2 +$$

SIDH fault attack

G2SIDH fault attack

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ → ○ ○ ○ 15/15

G2SIDH Fault Attack Results

If $\phi_A(\mathcal{A}[2^{e_A}])$ has 2 generators, the probability that 2, 3, 4 faults is enough is 0.38, 0.66, 0.82

If $\phi_A(\mathcal{A}[2^{e_A}])$ has 3 generators, the probability that 3,4 faults is enough is 0.33, 0.62